

SMART Sprinkler Systems to Save Water Yibing Xin FM Global, USA

RESILIENCE IS A CHOICE.

There may be sub-national or regional differences in restrictions. The policy categories shown may not apply at all sub-national levels. A country is coded as having these restrictions if at least some sub-national regions have implemented them.

Face covering policies during the COVID-19 pandemic, Apr 16, 2020 There may be sub-national or regional differences in restrictions. The policy categories shown may not apply at all

Our World in Data

There may be sub-national or regional differences in restrictions. The policy categories shown may not apply at all sub-national levels. A country is coded as having these restrictions if at least some sub-national regions have implemented them.

Face covering policies during the COVID-19 pandemic, Feb 4, 2020 There may be sub-national or regional differences in restrictions. The policy categories shown may not apply at all sub-national levels. A country is coded as having these restrictions if at least some sub-national regions have implemented them.

Face covering policies during the COVID-19 pandemic, Mar 15, 2020 There may be sub-national or regional differences in restrictions. The policy categories shown may not apply at all

sub-national levels. A country is coded as having these restrictions if at least some sub-national regions have implemented them.

What can we do better?

Source: Oxford COVID-19 Government Response Tracker, Blavatnik School of Government, University of Oxford – Last updated 29 April 2022 OurWorldInData.org/coronavirus • CC BY

Our World in Data

- Introduction to SMART sprinkler
- Previous work
- Evaluation of applications
 - Storage applications
 - Open-top combustible containers
- Potential future applications
 - Roll paper, ASRS, LIB/ESS
- Summary

Introduction to SMART Sprinkler

A sprinkler system that utilizes

<u>Simultaneous</u>, <u>Monitoring</u>, <u>Assessment & Response</u> <u>Technology</u>

Target highly challenging fires

- Increasing fire hazards
 - High storage
 - Fast fire spread
 - Slow water transport
- Traditional sprinklers
 - Slow detection
 - Reactive to fire spread
 - Sprinkler skipping

Previous Work –

Proof-of-Concept using FM Global SMART Sprinklers

RESILIENCE IS A CHOICE.

Previous Work – Proof of Concept

Ref: Fire Technology 53(5):1-22, 2017.

Previous Work – SMART Sprinkler Development

Fire detection times

- Sand burner fires
- Sprinkler activation
 - Heptane pan fires

System performance

• Rack storage fires

Previous Work – Detection Accuracy

• Where is the fire?

Previous Work – Activation Patterns

• Which sprinkler to activate?

		(South Up)		
	Node: 08e5	Node: 0a4c	Node: 0a48	
	14.19	13.29	13.94	
Node: 0a66	Node: 0741	Node: 0a54	Node: 0934	Node: 0a4a
14.58	16.00	21.03	17.29	16.52
		\circ		
	Node: 0a27	Node: 0730	Node: 0a50	
	16.26	17.29	17.03	
		Node: 6180		
		15.87		

		(South Up)		
	Node: 08e5	Node: 0a4c	Node: 0a48	
	10.71	11.74	10.84	
Node: 0a66	Node: 0741	Node: 0a54	Node: 0934	Node: 0a4a
10.71	11.74	13.81	13.94	11.35
		SMOKE!	O ^{MOKE!}	
	Node: 0a27	Node: 0730	Node: 0a50	
	10.97	12.13	11.61	
		Node: 6180		
		11.74		

Previous Work – Rack Storage Assessment

Test conditions

- 2x4,7-tier CUP
- Ignition between 2 offset
- Smoke alarm & $\Delta T=5^{\circ}C$
- SMART: K300, 6 @ 37 mm/min
- AS_QR: K300, 12 @ 73 mm/min

Previous Work – Effectiveness Comparison

Current Studies –

Evaluation of Applications in Storage Facilities

RESILIENCE IS A CHOICE.

Current Studies – Potential applications

- Low piled storage
 - Non-storage occupancies, high water demand
- High-bay rack storage
 - Storage occupancies, Highly challenging fires
- Open-top combustible containers
 - Challenging water transport, explore feasibility

Current Study – Low Piled Storage

Applications

- Manufacturing facilities
- Incidental storage

Test conditions

- CUP, CEP, UUP Commodities
- Under 9- & 18-m ceiling
- Target 2.4-m from main array

Activation criteria

- 1) ∆T > 5°C / min
- 2) T> 57°C

Current Study – Low Piled Storage

FM^{Global®}

Test results

- Fire contained in main array
- No target ignition
- 4-5 activation sufficient
- CUP performed better than UUP
- Algorithm's impact clear

Water demand: SMART vs traditional sprinkler

Commodity	Ceiling	DS 3-26 Design*	SMART Sprinkler	Reduction in Water Demand		
	Height m (ft)	mm/min over m^2	System Density	5-Sprinkler	9-Sprinkler	
		(gpm/ft² over ft²)	mm/min (gpm/ft²)	Design	Design	
CUP	9.1 (30)	12/232	8	07 0/	76 %	
		(0.3/2,500)	(0.2)	01 70		
	18.3 (60)	20/280	15	00 0/	78 %	
		(0.5/3,000)	(0.37)	00 70		
UUP ⁺	9.1 (30)	45/93	24	72.0/	51 %	
		(1.1/1,000)	(0.6)	/3 %		
	18.3 (60)	65/93	41	<u> </u>	44.0/	
		(1.6/1,000)	(1.0)	69 %	44 %	

* Assuming 9.3 m² (100 ft²) coverage area per sprinkler.

⁺ UUP sprinkler design listed in DS 3-26 (Table 3) [6] as number of K360 (K25.2) sprinklers at a specified pressure.

Application: storage facilities

- Very high storage
- Fast fire spread
- Long-distance water transport
- In-rack protection often applied

SMART sprinkler

- Early fire detection
 - Combined w/ in-rack detectors
- Localized water application
 - Avoid sprinkler skipping

Comparison of sprinkler activation

- In-rack detection \rightarrow 1/3 HRR
- Effective activation pattern
- Reduce water demand
- Avoid in-rack sprinklers

In-rack or ceiling detection

- Absolute temperature
- Temperature rise

Activation pattern

- Fixed # sprinklers
- Fixed radius

Limited damage

- Early suppression
- 77%↓ density

Ceiling

13.7 m

(45 ft)

Open-Top Combustible Containers

- Widely used in storage facilities
- Arranged in racks or solid piles
- Unexpanded plastic fires
- Water transport significantly delayed

SMART sprinkler

- Early activation upon small fires
- Potentially mitigate water delay

Suppression water pipe

- Rack storage test
 - Meas. Critical Delivered Flux (CDF)
 - 2x4, 3-tier configuration

Test matrix and conditions

Test Result	Test 1	Test 2	Test 3ª	Test 4	Test 5	Test 6
Test Date	9/13/18	9/17/18	9/20/18	10/02/18	10/05/18	10/31/18
Theoretical Sprinkler Response	Commodity Classification	Commodity Classification	SMART	SMART	SMART	SMART
Sprinkler Activation Temperature, °C (°F)	141 (286)	141 (286)	57 (135)	57 (135)	57 (135)	57 (135)
Response Time Index (RTI), (m·s) ^{1/2} [(ft·s) ^{1/2}]	276 (500)	276 (500)	28 (50)	28 (50)	28 (50)	28 (50)
Plastic Liner Present	Yes	Yes	Yes	Yes	No	No
Delivered Water Flux, mm/min (gpm/ft²)	73 (1.8)	17 (0.42)	17 (0.42)	17 (0.42)	73 (1.8)	41 (1.0)
FGR _{be} , kW/s	97	111	16	15	6	8
$HRR_{be}(\dot{q}_{be}), kW$	3,332	3,250	337	445	244	350

Traditional sprinklers

- High HRR @ suppression
- Uncontrolled fire
- Excessive CDF

SMART sprinkler

- Low HRR @ suppression
- Controlled fire
- Est. CDF ↓ >50%

Potential Future Applications

- Reduce water demand
 - ASRS: mini-load, top-load, other arrangements
 - Lithium-ion batteries / energy storage systems
- Highly challenging fires
 - Roll paper storage
 - Tight-packed storage (TL-ASRS)
 - Open-top combustible containers (OTCC)

Summary & Key Takeaways

- Today's commercial properties requires SMART protection
 - Challenging fires, limited water supplies, resilient operations
- Proof-of-concept studies showed effectiveness
- Current studies focused on water saving
 - Low piled storage, high-bay storage, OTCCs
 - Substantial water demand reduction
- Future potential applications expanding
 - Roll paper, ASRS, LIB/ESS, OTCC

Reference: FM Global Technical Report

https://www.fmglobal.com/research-and-resources/research-and-testing/-/media/25C4E9A7288D4ED3B04

Thank you. Any questions?

RESILIENCE IS A CHOICE.

Contact: yibing.xin@fmglobal.com